Regioselectivity in the Hydroboration of Steroidal Δ^3 -Allylic Alcohols†

J. Chem. Research (S), 1997, 56–57†

Muzaffar Alam, James R. Hanson,* Mansur Liman and Sivajini Nagaratnam

School of Molecular Sciences, University of Sussex, Brighton, Sussex BN1 9QJ, UK

The presence of an allylic 5α -hydroxy group in an androst-3-ene increases the proportion of addition of a borane to the adjacent C-4 compared to the unsubstituted steroid and directs the addition to the face of the alkene *anti* to the hydroxy group with stereochemical effects that may oppose those of the C-10 β -methyl group.

Hydroboration proceeds in a *cis*-manner on the less-hindered face of an alkene with anti-Markownikoff regioselectivity. ^{1,2} The directing effects of electronegative substituents in allyl derivatives modify the regiospecificity favouring addition of the borane at the 2-position.³ In cyclohex-2-en-1-ols, the hydroxy group also affects the stereospecificity and directs the addition of the borane to the opposite face of the alkene.⁴ Other directing effects in cyclic systems may arise from transannular diaxial interactions between the borane and sterically bulky groups. The relative contributions of these effects

The C-10 angular methyl group can also affect the stereochemistry of reactions of the disubstituted androst-3-enes. The absence of a Markownikoff effect can afford greater potential for an adjacent hydroxy group to modify both the regiochemistry and stereochemistry of hydroboration. The hydroboration of 17β -acetoxy- 5α -hydroxy-19-norandrost-3-ene was compared to 17β -acetoxy- 5α -androst-3-ene and 17β -acetoxy-19-norandrost-3-ene to contrast the directing role of the 10β -methyl group with that of the pseudo-axial 10-hydroxy group.

Table 1 Yields (%) of hydroboration products of androst-3-enes

require evaluation. In the steroid series, the directing effect of an allylic hydroxy group on the hydroboration of the trisubstituted alkene, androst-4-ene, is sufficient to overturn the normal directing effect of the C-10 methyl group.

The results are shown in Table 1. The structures of the products were readily established from the multiplicity of the *CH*(OH) resonances in the ¹H NMR spectra⁶ and by comparison with literature data.⁷

The 5α -hydroxy group increased the proportion of addition at C-4 in the hydroboration of androst-3-enes despite the fact that this is a more hindered position than C-3. The *trans* directing effect of the 5α -hydroxy group opposed the steric hindrance of the 10β -methyl group and increased the amount

^{*}To receive any correspondence.

[†]This is a **Short Paper** as defined in the Instructions for Authors, Section 5.0 [see *J. Chem. Research (S)*, 1997, Issue 1]; there is therefore no corresponding material in *J. Chem. Research (M)*.

of addition to the β -face of the 3-ene. In the case of the 19-nor steroid, lacking this methyl group, only products arising from addition to the β -face were obtained when a 5α hydroxy group was present. Comparison of the results of hydroboration of 5α-hydroxyandrost-3-ene and the corresponding 19-nor steroid suggests that the 10β -methyl group and the 5α-hydroxy group have approximately equivalent directing effects.

Experimental

General experimental details have been described previously.5 Steroids were crystallized from ethyl acetate or acetone-light petroleum mixtures.

Hydroboration Experiments.— 17β -*Acetoxy*- 5α -*androst*-3-*ene*. The steroid (1 g) in dry THF (30 cm³) was treated with borane in THF (30 cm³, 1 M) for 4 h. Water (10 cm³) was added and the solution cooled to 0 °C. Aqueous sodium hydroxide (20 cm³, 10%) was added followed by the dropwise addition of hydrogen peroxide (20 cm³, 30%). The mixture was stirred overnight. Sodium sulfite (2 g) was added followed by acetic acid (1 cm³), water (50 cm³), dil. hydrochloric acid (50 cm³) and ethyl acetate (100 cm³). The organic layer was separated, washed with water, brine and then dried. The solvent was evaporated and the residue chromatographed on silica. Elution with 25% ethyl acetate-light petroleum gave successively (i) 3β ,17 β -dihydroxy-5 α -androstane (64 mg), needles, mp 167–169 °C (lit., 168–169 °C), $\nu_{\text{max}}/\text{cm}^{-1}$ 3450, 3304; δ_{H} (3 H, s, 18-H), 0.79 (3 H, s, 19-H), 3.61 (2 H, m, 3 α - and 17 α -H); (ii) 4α ,17 β -hydroxy- 5α -androstane (263 mg), prisms, mp 231–233 °C (lit., 8 235–237 °C), $v_{\text{max}}/\text{cm}^{-1}$ 3506, 3433; δ_{H} 0.73 (3 H, s, 18-H), 0.81 (3 H, s, 19-H), 3.45 (1 H, dt, J 4.6 and 10.5 Hz, 4β -H), 3.63 (1 H, t, J 8.6 Hz, 17α-H); (iii) 4β ,17β-dihydroxy-5α-androstane (92 mg), needles, mp 179–181 °C (lit., 176–178 °C), $\nu_{\rm max}/{\rm cm}^{-1}$ 3490, 339; $\delta_{\rm H}$ 0.72 (3 H, s, 18-H), 0.99 (3 H, s, 19-H), 3.62 (1 H, t, J 8.6 Hz, 3.88 (1 H, m, 4α-H); (iv) 3α , 17β-dihydroxy- 5α -androstane (278 mg), prisms, mp 220–223 °C (lit., ⁷ 222–224 °C), $\nu_{\text{max}}/\text{cm}^{-1}$ 3490, 3400; δ_{H} 0.73 (3 H, s, 18-H), 0.79 (3 H, s, 19-H), 3.62 (1 H, t, J 8.6 Hz, 17α-H), 4.05 (1 H, brs, 3β-H). 17β-Acetoxy-19-nor-5α-androst-3-ene. The 19-nor steroid (1 g)

gave (i) 4β -17 β -dihydroxy-19-nor-5 α -androstane (63 mg), needles, mp 167–169 °C (Found: C, 77.5; H, 10.8. $C_{18}H_{30}O_2$ requires C, 77.6; H, 10.9%); $v_{\text{max}}/\text{cm}^{-1}$ 3305; δ_{H} 0.74 (3 H, s, 18-H), 3.64 (1 H, t, J 8.2 Hz, 17.4 H) $v_{\text{max}}/\text{cm}^{-1}$ 340 (1 H, t, J 8.2 Hz, 17.4 H) $v_{\text{max}}/\text{cm}^{-1}$ 376 (1 H, b) $v_{\text{max}}/\text{cm}^{-1}$ 377 (1 H, b) $v_{\text{max}}/\text{cm}^{-1}$ 378 (1 H, b) $v_{\text{max}}/\text{cm}^{-1}$ Hz, 17α-H), 3.76 (1 H, brs, 4α-H); (ii) 4α ,17β-dihydroxy-19-nor- 5α -androstane (240 mg), plates, mp 200–220 °C (Found: C, 77.5; H, 10.9. $C_{18}H_{30}O_2$ requires C, 77.5; H, 10.9%); v_{max}/cm^{-1} 3230; $\delta_{\rm H}$ 0.75 $(3 \text{ H, s, } 18\text{-H}), 3.21 (1 \text{ H, td}, J 10.5 \text{ and } 4.6 \text{ Hz}, 4\beta\text{-H}), 3.64 (1 \text{ H, t, } 10.5 \text{ Hz})$ J 8.2 Hz, 17α-H); (iii) 3α,17β-dihydroxy-19-nor-5α-androstane (145 mg), needles, mp 163 °C (Found: C, 77.6; H, 11.0. $C_{18}H_{30}O_2$ requires c, 77.6; H, 10.9%); $v_{\text{max}}/\text{cm}^{-1}$ 3279; δ_{H} 0.72 (3 H, s, 18-H), 3.64 (1 H t, J 8.2 Hz, 17α-H), 4.12 (1 H, brs, 3β-H); (iv) 3β,17β-dihy-1419. droxy-19-nor-5α-androstane (120 mg), needles, mp 141–143 °C (Found: C, 77.5; H, 10.7. $C_{18}H_{30}O_2$ requires C, 77.6; H, 10.9%); $v_{\text{max}}/\text{cm}^{-1}$ 3348; δ_{H} 0.74 (3 H, s, 18-H), 3.57 (1 H, t, *J* 10.5 and 4.5 Hz, 3α -H) 3.62 (1 H, t, *J* 8.1 Hz, 17α -H).

17 β -Acetoxy-5 α -hydroxyandrost-3-ene. The 5α -hydroxy steroid

(1 g) gave $4\alpha,17\beta$ -dihydroxy- 5α -androstane (147 mg) and $4\beta,17\beta$ -dihydroxy- 5β -androstane (30 mg) which were identified by their ¹H NMR spectra. Further chromatography gave $4\alpha,5\alpha,17\beta$ -trihydroxyandrostane (90 mg), prisms, mp 219–220 °C (Found: C, 71.7; H, 10.3. $C_{19}H_{32}O_{3}\cdot0.5H_{2}O$ requires C, 71.9; H, 10.5%); $\nu_{\rm max}/{\rm cm}^{-1}$ 3498, 3409, 3335; $\delta_{\rm H}$ 0.73 (3 H, s, 18-H), 0.94 (3 H, s, 19-H), 3.65 (2 H, m, 4 β - and 17 α -H). The 4 α ,17 β -diacetate, prepared with acetic anhydride in pyridine, had mp 170–172 °C (Found: C, 70.7; H, 9.5. C₂₃H₃₆O₅ requires C, 70.4; H, 9.2%); $\nu_{\text{max}}/\nu_{\text{max}}$ cm⁻¹ 3380, 1720; δ_{H} 0.71 (3 H, s, 18-H), 0.91 (3 H, s, 19-H), 1.96 and 1.99 (each 3 H, s, OAc), 4.51 (1 H, t, J 7.8 Hz, 17α-H), 4.91 (1 H, dd, J 6.0 and 10.5 Hz, 4β-H). Further chromatography gave 4β , 5α , 17β -trihydroxyandrostane (281 mg), prisms, 223–225 °C (Found: C, 71.5; H, 10.3. $C_{19}H_{32}O_3 \cdot 0.5H_2O$ requires C, 71.9; H, 10.5%); $v_{\text{max}}/\text{cm}^{-1}$ 3490, 3400, 3367; δ_{H} 0.74 (3 H, s, 18-H), 1.18 (3 H, s, 19-H), 3.54 (1 H, t, J 2.8 Hz, 4α -H), 3.64 (1 H, t, J 8.4 Hz, 17α-H). The 4β ,17 β -diacetate, prepared with acetic anhydride in pyridine, had mp 181–183 °C (Found: C, 70.2; H, 9.0. C₂₃H₃₆O₅ requires C, 70.4; H, 9.2%); $v_{\text{max}}/\text{cm}^{-1}$ 3240, 1740, 1720; δ_{H} 0.74 (3 H, s, 18-H), 1.10 (3 H, s, 19-H), 1.96 and 1.99 (each 3 H, s, OAc), 4.54 (1 H, t, J 7.8 Hz, 17 α -H), 4.65 (1 H, t, J 2.6 Hz, 4 α -H). Further elution gave 3β ,5 α ,17 β -trihydroxyandrostane (201 mg), mp 192–194 °C (lit., 9 193–196 °C).

 17β -Acetoxy-5α-hydroxy-19-norandrost-3-ene. The 5α-hydroxy-19-nor steroid (1 g) gave successively (i) 5α , 17β -dihydroxy-19-norandrostane (40 mg) as a gum, m/z 292 (M⁺), 274 (M–H₂O) 256 (M–2H₂O); $v_{\text{max}}/\text{cm}^{-1}$ 3512; δ_{H} 0.75 (3 H, s, 18-H), 3.65 (1 H, t, J8.2 Hz, 17α -H); (ii) 17β -acetoxy- 4β , 5α -dihydroxy-19-norandrostane 8.2 Hz, $1/\alpha$ -H); (ii) $1/\beta$ -acetoxy-4 β ,5 α -annyaroxy-19-noranarostane (160 mg), plates, mp 187–189 °C (Found: C, 71.3; H, 9.7. $C_{20}H_{32}O_4$ requires C, 71.4; H, 9.6%); $v_{\text{max}}/\text{cm}^{-1}$ 3320, 1742; δ_{H} 0.78 (3 H, s, 18-H), 2.02 (3 H, s, OAc), 3.47 (1 H, t, J 3.0 Hz, 4α -H), 4.58 (1 H, t, J 8 Hz, 17 α -H); (iii) 17 β -acetoxy-3 β ,5 α -dihydroxy-19-norandrostane (80 mg), needles, mp 218–220 °C (Found: C, 70.7; H, 9.6. $C_{20}H_{32}O_4$ requires C, 71.4; H, 9.6%); $v_{\text{max}}/\text{cm}^{-1}$ 3358, 1720; δ_{H} 0.75 (3 H, s, 18-H), 2.04 (3 H, s, OAc), 3.98 (1 H, tt, J 9.6 and 4.5 Hz. 3α -H), 4.62 (1 H, t, J 8.2 Hz, 17α -H); (iv) 4β , 5α -17 β -trihydroxy-19-norandrostane (410 mg), prisms, 203–205 °C (Found: C, 71.5; H, 10.2. $C_{18}H_{30}O_3 \cdot 0.5H_2O$ requires C, 71.2; H, 10.3%); $v_{\text{max}}/\text{cm}^{-1}$ 3450; $\delta_{\rm H}$ 0.74 (3 H, s, 18-H), 3.48 (1 H, t, J 2.8 Hz, 4α -H), 3.65 (1 H, t, J 8 Hz, 17α -H).

Received, 28th August 1996; Accepted, 22nd October 1996 *Paper E/6/05946E*

References

- 1 A. Pelter and K. Smith, in Comprehensive Organic Synthesis, ed. B. M. Trost and I. Fleming, Pergamon Press, Oxford, 1991, vol. 8,
- 2 M. Husim, Y. Mazur and F. Sondheimer, J. Org. Chem., 1964, 29,
- 3 H. C. Brown and R. M. Gallivan, J. Am. Chem. Soc., 1968, 90, 2906.
- 4 E. Dunkelblum, R. Levene and J. Klein, Tetrahedron, 1972, 28, 1009.
- 5 J. R. Hanson, P. B. Hitchcock, M. Liman and S. Nagaratnam, J. Chem. Soc., Perkin Trans. 1, 1995, 2183.
- 6 J. E. Bridgeman, P. C. Cherry, A. S. Clegg, J. M. Evans, Sir Ewart R. H. Jones, A. Kasal, V. Kumar, G. D. Meakins, Y. Morisawa, E. E. Richards and P. D. Woodgate, *J. Chem. Soc. C*, 1970, 250.
- 7 Dictionary of Steroids, ed. R. A. Hill, D. N. Kirk, H. L. J. Makin and G. M. Murphy, Chapman and Hall, London, 1992.
- 8 D. Marcano and H. Rojas, Acta Cient. Venezolana, 1974, 25, 195.
- 9 S. Julia, P. A. Plattner and H. Heusser, Helv. Chim. Acta, 1952, 35,